

The HC-SR04 Ultrasonic Sensor

+

Atmel ATtiny13

+

AVR Assembly Language

The HC-SR04 (pictured above) is an inexpensive ultrasonic sensor that can sense not

only if an object presents itself, like a PIR sensor, but can also sense and relay the

distance to that object.

There is quite a lot of information on the web regarding this sensor coupled with AVR

microcontrollers, but basically they are all done in C with hefty AVRs, like those

found on Arduinos. I really wanted to see if I could get this sensor to work on my

favorite AVR, the Tiny13, and do it in AVR assembly language. Happily, I've

discovered that this sensor can be used quite easily on a Tiny13 in assembly language.

And obviously, if it works on a Tiny13, it'll work on other AVR chips just as well.

A good starting point is the sensor datasheet from iteadstudio.com. Download it, print

it out, and get familiar with page 2 of the document. There you will find a diagram of

the pulse timing. What follows is pretty much that same information in somewhat

more detail.

http://iteadstudio.com/store/images/produce/Sensor/HCSR04/HC-SR04.pdf
http://iteadstudio.com/store/index.php?main_page=product_info&cPath=4&products_id=52

Basic Operation and Timing of the HC-SRO4 Ultrasonic Sensor

1. Make "Trig" (pin 2) on the sensor high for 10µs. This initiates a sensor cycle.

2. 8x40kHz pulses will be sent from the "T" transmitting piezzo transducer of the

sensor, after which time the "Echo" pin on the sensor will go from low to high.

3. The 40kHz sound wave will bounce off the nearest object and return to the

sensor.

4. When the sensor detects the reflected sound wave, the the Echo pin will go low

again.

5. The distance between the sensor and the detected object can be calculated

based on the length of time the Echo pin is high.

6. If no object is detected, the Echo pin will stay high for 38ms and then go low.

What follows is the mathmatics behind the code of the project. If you are only

interested in the nuts and bolts of getting your sensor working then please feel free to

jump directly to the hardware and software sections.

Basic Distance Calculation for Ultrasonic Sensing

http://www.ezdenki.com/ultrasonic.php#hardware
http://www.ezdenki.com/ultrasonic.php#software

At first glance there may seem to be a lot of math involved. In fact it's just a few very

simple calculations to convert between speed, time, and distance.

The speed of sound: 340.29 m/s (meters per second).

We will be measuring distance to an object by the time it takes a sound wave to make

a round trip to the object and back again, so the the useful number is actually:

The speed of sound to an object and back: 170.15 m/s.

Since our sensor can only detect items relatively nearby, let's change to more useful

units by converting from m/s to µs/cm:
s m 1x106µs 58.772µs

 ------- X ----- X ------- = --------

 170.15m 100cm s cm

Time for pulse to travel 1cm to an object and then return to the sensor: 58.772µs.

Time/Distance Quiz

Question 1: A ping takes 150µs to hit an object and return. How far away is the

object?

Answer:
 cm

 150µs X -------- = approx. 2.55cm

 58.772µs

Question 2: How long for a ping to hit and return from an object 30cm away?

Answer:
 58.772µs

 30cm X -------- = approx. 1,763µs or 1.763ms

 cm

AVR Timings

The main piece of hardware used in this project (besides the sensor itself) is an Atmel

ATtiny13(A) operating at the default fuse setting, which means it's running at 9.6MHz

with a /8 prescaler, which comes out to a 1.2MHz clock on the chip. This is the speed

at which instructions on the chip are run. Note that some instructions may require 2 or

more clock cycles to complete. See the ATtiny13 Datasheet for details.

AVR Clock Cycles (clks) to Time Conversions
 ============== 1.2MHz clock timings ==============

 1,200,000 clks = 1s 1,000,000 clks = 833.3ms

 120,000 clks = 100ms 100,000 clks = 83.3ms

 12,000 clks = 10ms 10,000 clks = 8.3ms

 1,200 clks = 1ms 1,000 clks = 833.3µs

 120 clks = 100µs 100 clks = 83.3µs

 12 clks = 10µs 10 clks = 8.3µs

 1.2 clks = 1µs 1 clk = 833.3ns

NOTE: The Tiny13 does not directly accept an external crystal ceramic resonator like

other AVRs. Therefore the timings/measurements in this particular project are only

accurate to ±10%. An external clock source could be used to drive an input pin, but it

would hardly be worth the effort. If you really need more accuracy, I would suggest

using an AVR that accepts an external crystal and, if you decide to go that route, the

calculations that follow will change depending on the frequency of the crystal used.

Distance to AVR Clock Cycle Conversions

What we really need is a quick conversion between the AVR clock cycles and

distance. We get that by combining the ultrasound timings with the AVR timings like

this:

Distance to AVR Clock Cycles (clks)
 58.772µs 1.2 clks

 -------- X -------- = 70.526clks/cm

 cm µs

Or to shed more light on what this means, the inverse:
 cm µs

 -------- X -------- = 0.014179 cm/clks

 58.772µs 1.2 clks

So the time for a pulse to shoot out, hit something a centimeter away, and return to the

sensor would be about 71 clock cycles. Likewise, in a single clock cycle, a distance of

0.14mm can be reckoned. (This is a theoretical value and cannot be attained by this

project because the resolution of the sensor itself is only 3mm.)

http://www.atmel.com/dyn/resources/prod_documents/2535S.pdf

Clock-Cycle/Distance Quiz

Question 1: A ping takes 2,110 clock cycles (clks) to hit an object and return. How far

away is the object?

Answer:
 cm

 2,110 clks X ----------- = approx. 30cm

 70.526 clks

Question 2: How many clock cycles will it take to sense an object 7cm away?

Answer:
 70.526 clks

 7cm X ----------- = approx. 496 clks

 cm

You can see that the clock-cycle to distance conversions won't end up in exact

numbers of clock cycles. This isn't a huge issue since the sensor itself is only rated for

a resolution of 0.3cm, so the 1.2MHz clock speed is fast enough to achieve that

resolution, albeit with a 10% error factor based on the accuracy of the AVR's internal

clock. In practice, without a crystal, the best we can do is probably closer to about

5mm~1cm of resolution -- YMMV.

The Hardware

Here is all that is needed to run the HC-SR04 on a Tiny13.

The sensor itself needs 5V to operate, so a simple 5V regulated supply running off of

a 9V battery is used. Other than that, you have the sensor itself, the Tiny13, and 2

LEDs and their current limiting resistors. The "Sense LED" (LED1 on the schematic)

http://www.ezdenki.com/graphics/ultrasonic-schematic.png

indicates if an object is detected, and the "Range LED" (LED2) tells us if the object is

within the range specified in the program.

The Code

At this point, it's just a matter of counting clock cycles in the code. The code is

heavily documented and includes most of the information on this page. It lists the

number of clock cycles per instruction where it matters. There are 2 timing loops, a

single-byte loop (BDELAY) and a word-length loop (WDELAY), to burn through

clock cycles.

;---------------------------;

; Ultrasonic Sensor Trial ;

;---------------------------;

; MikeShegedin

; 20.November.2011

;

; Ver1.2

; Cleanup of code and documentation

;

; AVR: ATTiny13A

; AVR PIN FUNCTION

; ======= =======================

; Pin2 PB3 SENSELED (sense LED) (optional)

; Pin3 PB4 BUTTON (optional)

; Pin5 PB0 TRIG pin on ultrasonic sensor

; Pin6 PB1 ECHO pin on ultrasonic sensor

; Pin7 PB2 RANGELED (range LED) (optional)

;

; Ultrasonic Sensor:

; HC-SR04 Ultrasonic ranging module

;

; Operation:

; Apply a 10µs signal on TRIG to start the sensing cycle. The HC-SR04

sensor will

; send out a 40kHz pulse for 200µs. If something is in the path of the

ultrasonic

; pulse, this pulse will bounch off that and return to the sensor. The

ECHO line on

; the sensor will go high for 150µs~25ms depending on distance to

detected object.

; If the ECHO line is high for 38ms it indicates that no return pulse was

detected.

; There should be an interval of at least 50ms between subsequent TRIG

pulses

; otherwise a lingering ultrasonic pulse may be detected during the next

ping cycle.

;

;

===

========

;

; Distance Calculation for ultrasonic sensing:

; Speed of sound is 340.29 m/s. Pulse must be sent and then return.

; Therefore time for a sound pulse (ping) to hit the target and return to

the sensor

; is 170.15 m/s.

;

; Convert to µs/s:

;

; s m 1x10^6(1E6)µs 58.772µs

; ------- X ----- X ------------- = --------

; 170.15m 100cm s cm

;

; This means it takes about 59µs for a sound pulse to travel 1cm to an

object and

; then return to the sensor.

;

; Compute distance based on time:

; Example 1: A ping takes 150µs to hit an object and return. How far away

is the

; object?

;

; cm

; 150µs X -------- = approx. 2.55cm

; 58.772µs

;

; Example 2: How long for a ping to hit and return from an object 30cm

away?

;

; 58.772µs

; 30cm X -------- = approx. 1,763µs or 1.763ms

; cm

;

;

===

========

;

; AVR TIMINGS

; Use default ATTINY13 timings (9.6MHz with /8 prescaler) for a 1.2MHz

clock.

; Fuse setting: -U lfuse:w:0x6a:m -U hfuse:w:0xff:m

;

; ============= 1.2MHz clock timings =============

;

; 1,200,000 clk = 1s 1,000,000 clk = 833.3ms

; 120,000 clk = 100ms 100,000 clk = 83.3ms

; 12,000 clk = 10ms 10,000 clk = 8.3ms

; 1,200 clk = 1ms 1,000 clk = 833.3µs

; 120 clk = 100µs 100 clk = 83.3µs

; 12 clk = 10µs 10 clk = 8.3µs

; 1.2 clk = 1µs 1 clk = 833.3ns

;

; NOTE: Timing accuracy of the AVR clock without a crystal is only about

±10%. Much

; higher accuracy can be achieved by using an external crystal if

desired. Of

; course, if an external crystal is used, clock timings will be based

on the

; value of the crystal.

;

;

===

========

;

; DELAY: Double Byte Timing Loop Routine

; By counting the number of clock cycles for the routine, including

loading n

; into YH and YL, calling the delay routine, and returning back, the

number of

; clock cycles (clks) was found to be as follows:

;

; Delay in clock pulses (clks) based on n: Time(clks) = 4n + 8

;

; Time delay in µs based on n:

; 10µs

; Time(µs) = (4n+8)clks X ------

; 12clks

;

; Therefore, simplified:

;

; 10n + 20

; Time(µs) = --------

; 3

;

; Compute n for the desired time T(µs) (solve for n):

;

; 3T(µs) - 20

; n = ===========

; 10

;

; Example: What should n be for a 100µs delay?

;

; (3 x 100) - 20

; n = --------------

; 10

;

; n = 28

;

; Example 2: What should n be for a 50ms delay?

;

; 1000µs

; First, convert ms to µs --> 50ms x ------ = 50,000µs

; 1ms

;

; (3 x 50,000) - 20 (3 x 50,000)

; n = ----------------- or n = ------------

; 10 10

;

; n = 14,998 or n = 15,000

;

; Note that the "- 20" term can probably be dropped for millisecond

; calculations since doing so results in a less than 1% error in

these cases.

;

;

===

========

;

; Conversion Summary

;

; Time/Distance Ratio from start of sending ping to the time it is received

back:

;

; 58.772µs

; --------

; cm

;

; AVR Clock/Time Ratio (for 1.2MHz AVR clock)

;

; 1.2clks

; -------

; µs

;

; AVR Clock clks/Distance Formulae

;

; 70.526clks 0.014179cm

; ---------- or ----------

; cm clks

;

; Timing of pulse indicating no object sensed (according to sensor

datasheet):

;

; 38ms which is the equivilant of 31,667clks.

;

;

===

========

;

.INCLUDE "TN13DEF.INC" ; ATTINY13 DEFINITIONS

 .EQU SENSELED=PORTB3 ; SENSELED pin (Output on AVR)

 .EQU RANGELED=PORTB2 ; RANGELED pin (Output on AVR)

 .EQU BUTT=PORTB4 ; Button pin (Input on AVR)

 .EQU TRIG=PORTB0 ; Sensor TRIG pin (Output on AVR, input on

sensor)

 .EQU ECHO=PORTB1 ; Sensor ECHO pin (Input on AVR, output on

sensor)

 .EQU BDV10usCNT=1 ; Number of iterations for (approx.) 10µs delay

 .EQU WDV50msCNT=10415 ; WDELAY count for 50ms delay

 .EQU BDV1cmCNT=19 ; Number of iterations for BDELAY loop to get 1cm

 ; resolution.

 .EQU BDV2mmCNT=6 ; Number of iterations for BDELAY loop to get 2mm

 ; resolution.

 .DEF A = R16 ; GENERAL PURPOSE ACCUMULATOR

 .DEF BDV = R17 ; Counter used in BDELAY routine.

 .DEF CNT = R18 ; CNT will be the no. of 150µs intervals of the

ECHO

; ECHO pulse, each of which indicates 2.55cm. CNT=0

; indicates object not detected.

 .DEF DTEST=R19 ; DTEST is used to test for particular distances.

; Will be 1 if distance test passes or 0 if failed

 .DEF DRNG1=R20 ; Distance in increments of CNT for DNEARER and

the shorter

; distance for DBETWEEN.

 .DEF DRNG2=R21 ; Longer distance (in increments of CNT) for

DBETWEEN.

 .ORG 0000

RJMP ON_RESET ; GO HERE WHEN CHIP IS TURNED ON OR RESET

 ON_RESET:

 ldi A, low(RAMEND) ; 1 Set Stack Pointer to end of RAM (1 BYTE

ON TINY13)

 out SPL,A

ldi A, (1<<SENSELED) | (1<<RANGELED) | (1<<TRIG)

out DDRB, A ; Set output pins

sbi PORTB, BUTT ; Enable pullup on button

cbi PORTB, ECHO ; Disable pullup on ECHO line

; rcall WAIT4BUTTON

 MAIN_LOOP:

rcall ONTRIG ; Start 10µs trigger pulse by setting TRIG high.

ldi BDV, BDV10usCNT ; Set DELAY count for delay of approx. 10µs.

rcall BDELAY ; Run the delay.

rcall OFFTRIG ; Turn off the trigger.

rcall WAIT4ONECHO ; Wait for start of ECHO pulse

rcall GETECHOPULSE ; Get length of echo pulse in CNT.

 ; At this point, CNT will have either the number

of

 ; 2.55cm intervals to the object or will be zero,

 ; indicating the object was not detected.

tst CNT ; Check CNT for zero, indicating object not detected.

breq NOOBJECT

rcall ONSENSELED ; Turn on SENSELED indicating object was detected.

ldi DRNG1,30

ldi DRNG2,31

rcall DBETWEEN ; Test for object within certain distance.

tst DTEST ; DTEST will be 1 if test passed (object is near).

breq NOTNEARER

rcall ONRANGELED

rjmp MAINWAIT

NOTNEARER:

rcall OFFRANGELED

rjmp MAINWAIT

 NOOBJECT:

rcall OFFSENSELED ; Turn OFF SENSELED indicating object not

detected.

rcall OFFRANGELED ; Turn OFF RANGELED since distnace test must be

false.

 MAINWAIT: ; The total sensing cycle from start to

finish should

ldi YH, HIGH(WDV50msCNT) ; take at least 50ms in order to allow existing

ldi YL, LOW(WDV50msCNT) ; ultrasonic pulses in the room to completely fade

and

rcall WDELAY ; not interfere with the subsequent sensing cycle.

 ; Since the time from triggering the pulse

to minimum

 ; ultrasonic pulses in the room to

completely fade and

 ; not interfere with the subsequent sensing

cycle.

 ; Since the time from triggering the pulse

to minimum

 ; pulse detection cycle is about 50µs, a

delay of 50ms

 ; here is probably appropriate.

 END:

 RJMP MAIN_LOOP ; MAIN LOOP DOES NOTHING (YET).

; -------------------------------------

; DNEARER

; Checks CNT to determine if object was detected closer than a particular

distance.

; The distance will be determined by the delay in GETECHOPULSE.

; DRNG1 must be loaded with the desired range value before this routine is

called.

DNEARER:

ldi DTEST,1 ; Assume test passed

cp CNT,DRNG1

brloDNret ; If CNT lower (closer) then exit with 1.

ldi DTEST,0 ; Otherwise, farther out, so exit with 0

DNret:

ret

; -------------------------------------

; DBETWEEN

; Checks CNT to determine if object was within a range of distances.

; The distance will be determined by the delay in GETECHOPULSE.

; DRNG1 and DRNG2 must be loaded with range values before this routine is

called.

DBETWEEN:

ldi DTEST,0 ; Assume test does not pass

cp CNT,DRNG1 ; Check lower distance

brloDBret ; If CNT lower (closer) then exit with 0.

cp CNT,DRNG2 ; Check upper distance

brplDBret ; If CNT higher (farther) then exit with 0.

ldi DTEST,1 ; Otherwise, farther out, so exit with 1

DBret:

ret

; -------------------------------------

; WAIT4BUTTON

; Stops until button is pressed (grounded) and released, then returns.

WAIT4BUTTON:

sbic PINB, BUTT ; Check button and skip if high (no press)

rjmp WAIT4BUTTON

W4B1:

sbis PINB, BUTT

rjmp W4B1

ret

; -------------------------------------

; WAIT4ONECHO

; Waits for echo to start from ultrasonic sensor.

WAIT4ONECHO:

sbis PINB, ECHO ; Check ECHO line of sensor and skip if high

rjmp WAIT4ONECHO

ret

; -------------------------------------

; GETECHOPULSE

; Loop timing is set up to generate one iteration/count per a fixed length

(ex. 1cm.)

; According to the timings listed above, we'll want 70 or 71 clks for 1cm

increments.

; The maximum pulse length for when an object is not detected is 38ms.

However a

; shorter maximum distance can be regarded as an object not detected.

;

; Everything between GEP1 and GEPret will be executed CNT times. The rest of

the

; routine has a 1-time 4clks overhead including the time to call the

routine. These

; clock cycles should be considered negligiable. A delay routine can be

inserted or

; called between the breq and sbic instructions such that CNT can be

associated with

; a set distance. Use NOP instructions to fine tune this delay section.

;

; If CNT overflows to 0 on the 256th count, the routine will exit and this

should be

; considered an object-not-detected condition.

GETECHOPULSE:

clr CNT ; 1 Clear CNT

GEP1:

inc CNT ; 1

tst CNT ; 1 Increment CNT (assume first pulse)

breqGEPret ; 1/2 If CNT overflows to zero, exit routine.

 ; Timing: false:1clk, true:2clk

ldi BDV,BDV2mmCNT ; * Load delay count here

rcall BDELAY ; * *time is 7+3(BDVxxxCNT) incl. setting BDV and

this

 ; rcall.

sbic PINB, ECHO ; 1/2 Check ECHO pin. If no ECHO, skip over next

instruction.

 ; Timing: false:1clk, true:2clk

rjmp GEP1 ; 2

GEPret:

ret ; 4

; -------------------------------------

; BDELAY

; A simple 1-byte loop delay

; See notes above for timing specifications

; BDV must be loaded with timing count before this routine is called!

BDELAY: ; 3 # of clks to call here

dec BDV ; 1 Decrement counter

brne BDELAY ; 1/2 Loop back up if not zero

 ; Timing: false:1clks, true:2clks

ret ; 4 Else return

; -------------------------------------

; WDELAY

; A simple 2-byte (Word) loop delay

; See notes above for timing specifications

; YH and YL must be pre-loaded with desired n *before* this routine is called

as follows:

; ldi YH, HIGH(n)

; ldi YL, LOW(n)

; rcall WDELAY

WDELAY:

sbiw YH:YL,1 ; 2 Word-level decrement

brne WDELAY ; 1/2 Loop back up if not zero

 ; Timing: false:1clks, true:2clks

ret ; 4 Else return

; -------------------------------------

; TOGGLE_LEDx

; Toggles either SENSELED or RANGELED

TOGGLESENSELED:

sbi PINB,SENSELED

ret

TOGGLERANGELED:

sbi PINB,RANGELED

ret

; -------------------------------------

; ON/OFF outputports

; Switches output port ON or OFF

ONSENSELED:

 SBI PORTB,SENSELED

ret

ONRANGELED:

 SBI PORTB,RANGELED

ret

ONTRIG:

 SBI PORTB,TRIG

ret

OFFSENSELED:

 CBI PORTB,SENSELED

ret

OFFRANGELED:

 CBI PORTB,RANGELED

ret

OFFTRIG:

 CBI PORTB,TRIG

ret

;------------------;

; END OF PROGRAM ;

;------------------;

	hardware
	software

